
Journal of Statistical Physics � 2275

Journal of Statistical Physics, Vol. 94, Nos. 5�6, 1999

The Distribution of the First Return Time for
Rational Maps
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We obtain exponential error estimates for the approximation of the zeroth
return time to the Poisson distribution for rational maps which might have criti-
cal points within the Julia set.
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1. INTRODUCTION

Recently there has been some great interest in studying the rates of mixing
in dynamical systems and how this translates in the distribution and con-
vergence of return times. A rather general result of Galves and Schmitt(4)

establishes the Poisson distribution of the zeroth return time for a general
class of dynamical systems, namely those that are ,-mixing. They moreover
provide error terms and used this to show in a follow up paper(1) that
repetition times for subshifts of finite types are normal distributed. For sub-
shifts of finite type Pitskel(9) proved that return times of all orders are in
the limit Poisson distributed, but he does not give any error terms. Using
approximations of transfer operators Hirata(7, 8) shows similar results for
Axiom A maps. With respect to weaker mixing maps, Poisson distributed
return times have been announced by Hirata, Saussol, and Vaienti for a
one parametric family of interval maps with an indifferent fixed point.

Here we look at rational maps on the Riemann sphere and their equi-
librium states on the Julia set. Because of critical points, the mixing proper-
ties are weaker than in the cases mentioned above. However, using distor-
tion theorems, it was shown in ref. 3 that the Central Limit Theorem
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applies. We also know that correlations decay exponentially fast(5) and in
ref. 6 we proved that return times in the limit are Poisson distributed (for
all orders). In this note we restrict ourselves to the zeroth return time and
shall provide error terms for its deviation from the exponential distribution
(Theorem 1).

Let us consider rational functions and assume that + is an equilibrium
state for a Ho� lder continuous potential f which has a ``supremum gap''
P( f )&sup f >0, where P( f ) is the topological pressure of f. Without loss
of generality one can assume that P( f )=0.

Let T : C � C be a rational map of degree d �2, and denote by J its
Julia set. Let f : J � R is a Ho� lder continuous function which satisfies the
condition P( f )& f >0 (``supremum gap''), where P( f ) is the pressure of f.
Then there exists an invariant measure + on J (+ is conformal with respect
to P( f )& f ). The equilibrium state + has been extensively studied (see, e.g.,
refs. 2 and 3).

With appropriate branch cuts on the Riemann sphere one can define
univalent inverse branches Sn of T n on quasidisks 0n (which have piece-
wise smooth boundary) for all n�1. The actual way in which the branch
cuts are executed is irrelevant in our context (since we do not use distor-
tion estimates) and below in Lemma 4 we shall use that branch cuts can
be done to suit the purpose at hand. We put An=[.(J ): . # Sn] for the
n-cylinders (for simplicity's sake we write .(J ) for .(J & 0n)). Note that by
ref. 2 the ``boundary set'' �An=[.(J & �0n): . # Sn] has zero +-measure,
that is An is a measure theoretic partition of J and the ``interiors'' of its
atoms are pairwise disjoint (the interior of .(J ) is understood to be
.(J & int(0n))).

Denote by An(x) an atom in An for which x # An(x), and put /n for
the characteristic function of An(x). (An(x) is almost always unique.)

In ref. 6 (Corollary 20) we showed that the return times are in the
limit Poisson distributed for all orders, that is

+([ y # J : !t( y)=r]) �
t r

r!
e&t (1)

for +-almost every x, as n tends to infinity, where

!t= :
[t�+(/ n)]

j=0

/n b T j

is a ``random variable'' whose value measures the number of times a given
point returns to An(x) within the normalized time t�+(An(x)).
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In this note we address the question how fast the convergence is in the
case of the zeroth (r=0) return time. If we put

Nt=[ y # J : {n( y)>t�+(An(x))]

(zero level set of !t ), where {n( y)=inf[k�0 : T ky # An(x)] is the return
time for the set An(x), then by Eq. (1) +(Nt ) � e&t as n � � almost
everywhere. This result is based on an application of a theorem of
Sevast'yanov. Here however we will use more elementary argument to get
the following error estimate.

Theorem 1. There exists a �<1 and a constant C1 so that

|+(Nt )&e&t |�C1�n

for every t and for all x # Jn , where the set Jn/J has +-measure at least
1&n\n�2.

2. MIXING RATES FOR RATIONAL MAPS

We shall need some mixing properties for + which is the equilibrium
state for the potential f. Since f has the ``supremum gap,'' the number
\=esup f&P( f ) is less than 1. If we put gn=e f + fT+ fT 2+ } } } + fT n&1&nP( f ) then
| gn.| ��\n. Moreover if A=.(J ), . # Sn , is an n-cylinder then T n is one-
to-one on it and, using the fact that + is e f &P( f )-conformal we obtain the
following estimate which we shall use several times:

+(A)=|
J

gn . d+�\n

Lemma 2. Let }>1. Then there exists a constant C2 and _<1 so
that

| +(A & T &k&nQ)&+(A) +(Q)|�C2_k}n+(Q) | gn.|�

for all k, n>0, measurable Q and atoms A=.(J ) of An, where . is a
suitable inverse branch of T n.

From now on let } be so that } - \ �1 and } - _ �1.
Let us note that if instead of the supremum norm on the right hand

side one wants to estimate in terms of the measure of A, then one generally
can not control the expanding term }n so well and make it grow at an
arbitrarily slow exponential rate. If for instance one allows D to be a union
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of atoms of An (not just contracting ones), then the corresponding mixing
property is

| +(D & T &k&nQ)&+(D) +(Q)|�C2_k&n+(D) +(Q)

where &>1 is determined by f, although if one only considers contracting
branches, then & can be replaced by }. In either case one cannot achieve the
,-mixing property (which would require the coefficients on the right hand
side to decay to zero independently of the ``cylinder length'' n).

Let 0< p<1 be so that d p
- \�1. In the next lemma we show that

those cylinders A # An that return ``to soon'' to themselves constitute a
small set. Define

Jc
n= .

A # An

.
[ pn]

m=1

A & T &mA

and then put Jn for its complement.

Lemma 3.

+(Jc
n)�n\n�2

Proof. Let {. denote the first return time to the set A. , . # Sn and
define

Um=[ y # J : {.( y)=m]

and obtain

Um & A.�A. & T &mA.� .
m

k=0

Uk & A.

With V=T mUm & A. we have V=A. & T mA. . Let us write .=�1.1,
where �1 # Sm and .1=T m. # Sn&m (with suitable branch cuts). We
proceed inductively and obtain

.=�k�k&1 } } } �1.k

where n=mk+l, 0�l�m, � j # Sm and .k=T mk. # S l . Let us note that
T mjV=A. j & A. j+1 for j=1,..., k, where . j=T jm.=� j+1 } } } �1.k. Since
+(A� k } } } � 1. k)�\n+m we can now estimate

:
. # Sn

+(Um & A.)� :
� 1,..., �k # Sm

+(A� k } } } � 1.k)�|Sm | \n+m
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where there are at most |Sm | choices for �1 and then for every j=1,...,
k&1 the � j+1 # Sm must satisfy T jmV/A� j+1 & A� j . For every � j we get
a unique � j+1 since the sets �(J & int(0m)), � # Sm are disjoint. Hence the
last inequality, where we also used the fact that +(A.~ )�|.|��\n+m for
.~ # Sn+m .

Since by assumption d p
- \ �1 we get

:
. # Sn

+(Um & A.)�d m\n+m�(d p\1�2)n \n�2\m�\n�2

and therefore

+(Jc
n)� :

[ pn]

m=0

:
. # Sn

+(Um & A.)�n\n�2

which goes to zero as n goes to infinity. K

3. PROOF OF THE MAIN THEOREM

Put h(r)=+(Nr), where Nr is the zero level set of !r . For simplicity
put A=An(x) and Mr=J"Nr=[ y # J : !r( y)>0]. We immediately obtain
the upper bound +(Mr )�r++(A) and a lower bound in the following
lemma. For the next lemma we will require that x # Jn .

Lemma 4. Assume x # Jn . Then there exists an '<1 and a con-
stant C3 so that

+(Mr )�r(1&C3'n)

Proof. Let A=An(x), put B0=A and define for j=1,..., [r�+(A)]

Bj=T &jA> .
j&1

l=0

(T &jA & T &lA)

�T &j \A> .
j&1

l=0

(A & T &l+ jA)+
Since Mr is the disjoint union of Bj , we get by invariance of the measure

+(Bj )�+(A)& :
j

l=1

+(A & T &lA)
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Since by assumption x # Jn we have A & T &lA=< for l� pn, and obtain

+(Bj )�+(A)& :
j

l=[ pn]+1

+(A & T &lA)

To estimate +(A & T &lA) for l # ([ pn], n) note that T l is one-to-one on A.
Thus, if we arrange for suitable branchcuts, we can find an inverse branch
� of T l so that A�A�=�(J ) and estimate according to Lemma 2 as
follows

+(A & T &lA)�+(A� & T &lA)�(1+C2) +(A) | gl�| ��c1 +(A) \l

For l>n, we get again by Lemma 2

+(A & T &lA)�+(A)( +(A)+C2_l&n}n | gn.|�)

where }>1 can be chosen arbitrarily and C2=C2(}) is independent of n
and l. Since | gn.|�� \n we can pick }=1�- \ to achieve

+(A & T &lA)�+(A)( +(A)+C2_l&n\n�2)�c2 +(A) _l&n\n�2

Thus, for j�1 (assume p�1�2 and _�\ p):

+(Bj )�+(A)& :
�

l=n+1

c2 +(A) _l&n\n�2& :
n

l=[ pn]+1

c1 +(A) \ l

�+(A)(1&c3 \ pn)

and since +(B0)=+(A) we get

+(Mr)= :
[r�+(A)]

j=0

+(Bj )

�\_ r
+(A)&+1+ +(A)(1&c3 \ pn)

�r(1&c3'n)

where '=\ p and C3=c3 . The statement of the lemma follows. K

We obtain the following multiplicative type property for the function h.
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Lemma 5. There exists a constant C4 so that for all t, r>0 and all
n large enough

|h(t+r)&h(t) h(r)|�C4 \n�2

Proof. Let us first note that

Nt+r=Nr&k & T &(R&K )Nk & T &RNt

where R=[r�+(A)], k=K+(A) and K�n is some numbers so that R&K
is positive, which is possible if n is large enough. Thus, by T-invariance
of +,

| +(Nt+r)&+(Nr&k & T &RNt )|�+(Mk) (2)

where a rough estimate yields

+(Mk)�K+(A)

and similarly

| +(Nr )&+(Nr&k)|�+(Mk)�K+(A) (3)

Next we use the mixing property of +. Note that

Nr&k=J> .
R&K

j=0

T &jA

and therefore

+(Nr&k & T &RNt )=+ \\J> .
R&K

j=0

T &jA+& T &RNt+
=+(Nt )&+ \ .

R&K

j=0

T &jA & T &RNt +
while on the other hand one has

+(Nt ) +(Nr&k)=+(Nt ) \1&+ \ .
R&K

j=0

T &jA++ .
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Hence (the inverse branch . of T n is so that A=.(J )) an application of
Lemma 2 yields

| +(Nr&k & T &RNt )& +(Nt ) +(Nr&k)|

= } + \ .
R&K

j=0

T &jA & T &RNt +&+(Nt ) + \ .
R&K

j=0

T &jA+ }
� :

R&K

j=0

| +(T &jA & T &RNt )&+(Nt ) +(T &jA)|

= :
R&K

j=0

| +(A & T &(K+j)Nt )&+(Nt ) +(A)|

�C2 :
�

j=0

}n_ j+(Nt ) | gn .| �

�c1 \n�2

since K�n, where we used that +(Nt )�1, +(A)�\n and } - \ �1. This
estimate combined with Eqs. (2) and (3) yields by the triangle inequality

|h(t+r)&h(t) h(r)|

�| +(Nt+r)&+(Nr&k & T &RNt )|

+| +(Nr&k & T &RNt )&+(Nt ) +(Nr&k)|+| +(Nr )&+(Nr&k)|

�c1 \n�2+2K+(A)

�C4 \n�2 K

For suitable choice of K the statement of Lemma 5 can be improved to
|h(t+r)&h(t) h(r)|�const +(A): for any :<1.

By an induction argument one now obtains (cf. ref. 4, Lemma 6):

|h(kr)&h(r)k|�
C4 \n�2

1&h(r)
(4)

Proof of Theorem 1. Put A=An(x) and let us now estimate
h(r)k&e&t, where we put t=kr, k�1. By Lemma 4

h(r)=1&+(Mr )�1&r+rC3 'n
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and thus

h(r)k&e&t�(1&r+rC3 'n)k&e&t

�ek(&r+rC3' n)&e&t

=e&t(ekrC3 'n
&1)

�2e&ttC3'n

if krC3'n is small enough (say �1�2). The lower bound is done similarly:

e&t&h(r)k�e&t&(1&r&+(A))k

�e&t&e&k(r++(A))&k(r++(A))2

�e&t(k+(A)+k(r++(A))2)

for r++(A) small enough. Thus

|h(r)k&e&t |�c1 t'ne&t

Now let us pick r # (\n�6, 2\n�6) so that k=t�r is an integer. We obtain
using Eq. (4) and Lemma 4 (recall that |1&h(r)|�const r):

|h(t)&e&t |�|h(t)&h(r)k |+|h(r)k&e&t |

�c2

\n�2

1&h(r)
+c1 t'ne&t

�c3 \n�3+c1 t'ne&t

�C1�n

for �<min(\1�3, '). K

REFERENCES

1. P. Collet, A. Galves, and B. Schmitt, Fluctuations of repetition times for Gibbsian sources,
preprint (1997).

2. M. Denker and M. Urbanski, Ergodic theory of equilibrium states for rational maps, Non-
linearity 4:103�134 (1991).

3. M. Denker, F. Przytycki, and M. Urbanski, On the transfer operator for rational functions
on the Riemann sphere, Ergod. Th. Dynam. Syst. 16:255�266 (1996).

4. A. Galves and B. Schmitt, Inequalities for hitting times in mixing dynamical systems,
Random and Computational Dynamics (1998).

5. N. T. A. Haydn, Convergence of the transfer operator for rational maps, Ergod. Th. Dynam.
Syst. 19 (1999).

1035Distribution of First Return Time for Rational Maps



6. N. T. A. Haydn, Statistical properties of equilibrium states for rational maps, preprint.
7. M. Hirata, Poisson law for Axiom A diffeomorphisms, Ergod. Th. Dynam. Syst. 13:533�556

(1993).
8. M. Hirata, Poisson law for the dynamical systems with the ``self-mixing'' conditions,

Dynamical Systems and Chaos, Vol. 1 (Worlds Sci. Publishing, River Edge, New York,
(1995), pp. 87�96.

9. B. Pitskel, Poisson law for Markov chains, Ergod. Th. Dynam. Syst. 11:501�513 (1991).

Communicated by P. Collet

� � � � � � � � � �

1036 Haydn


